Now Reading
Safety support opens up automotive, health and industrial markets for ARM Cortex-R5 processor
0

Safety support opens up automotive, health and industrial markets for ARM Cortex-R5 processor

Posted by Anita PodsiadloJanuary 26, 2015

ARM has delivered a comprehensive safety document set for the ARM® Cortex®-R5 processor to drive its adoption in safety-critical applications. This is a vital step toward the cost-effective deployment of more technically advanced systems across multiple sectors including automotive, health and industrial. The Cortex-R5 is the first in a range of ARM processors to come with a safety document set that semiconductor companies can use to demonstrate compliance with new functional safety standards.

“Functional safety is increasingly important for many markets, including automotive, medical and industrial applications, and ARM is committed to supporting partners wishing to pursue these rapidly-expanding markets,” said Noel Hurley, general manager, CPU group, ARM. “The Cortex-R5 processor has a rich set of fault detection and control features and the addition of generic safety documentation means developers can now use it across the broadest range of safety applications. ARM will be supporting other processors from our diverse product portfolio in a similar way.”

System developers now have assurance that the Cortex-R5 processor can be used in safety-related applications as the SoC developers have access to additional information required for demonstrating functional safety. For automotive applications such as powertrain and Advanced Driver Assistance Systems (ADAS), Cortex R5-based designs with ISO 26262 enables a reduction in the overall quantity of components. This results in faster design cycles and lower manufacturing and overall system costs as well as reduced power consumption and vehicle emissions.

In addition, industrial safety-related systems need to demonstrate compliance to the IEC 61508 standard and the Cortex-R5 safety document package supports this qualification. The generic safety documentation also enables Cortex-R5 to be applied to many other markets, including medical, which is covered by a broad range of standards, requiring a generic approach.

Furthermore, the industry-standard ARM Compiler is now TÜV SÜD certified, allowing for safety-related software development up to ISO 26262 ASIL D and IEC 61508 SIL 3 without further toolchain qualification activities. The TÜV certification complements the ARM Compiler Qualification Kit, which contains the Safety Manual, Development Process Document, Test Report and Defect Report.

The Cortex-R5 processor is an advanced and cost-effective real-time processor for many embedded applications and has been widely adopted by silicon vendors to develop both application-specific SoCs and general purpose microcontrollers.

“We are pleased about ARM’s growing investment in the area of functional safety as it will greatly enhance and strengthen the Cortex-R5 processor platform,” said Takeshi Fuse, senior vice president, automotive MCU BU, Spansion. “We welcome further and pervasive adoption of Cortex-R5 architecture in the Automotive industry.”

 

“Functional safety techniques are being applied at increasingly lower levels of design abstraction. ARM’s approach for functional safety designs with the Cortex-R5 core will ease the safety certification burden for our customers in the automotive, health and industrial markets,” said Norbert Asche, general manager, safety microcontrollers, Texas Instruments. “Our Hercules™ TMS570LC4x and RM57x microcontrollers (MCUs), based on the ARM Cortex-R5 core, and our SafeTI™ design packages help designers meet requirements of industry standard functional safety standards such as ISO 26262, IEC 61508 and ISO 13849 while managing both systematic and random failures.”

 

About The Author
Anita Podsiadlo

Leave a Response