SWARM IntelligenceTM The new Edge paradigm

The power of SWARM intelligence is visible in nature, where the collective efforts of very simple creatures like ants, bees and termites can produce highly sophisticated results. Termites build enormous mounds in which internal temperatures are regulated to within a degree, even when temperatures outside the mound vary by 40oC or more.

Individual ants forage at random, but the overall motion of the collective produces highly efficient search algorithms that researchers have compared to those used in Google Maps. Bees successfully build and defend hives, forage for food, protect the queen and raise their young, even though the drones themselves possess very little personal intelligence. Individual members of these collectives have no knowledge of the overall aims of the colony; they merely follow simple rule sets. Yet the collective itself exhibits characteristics that are not present in its individual members. The collective can almost be viewed as an organism in its own right.

The relevance to the Internet of Things

The same principles that make natural collectives successful can be put to work in data networking. The sum of the knowledge embedded within thousands of relatively simple devices, if efficiently and effectively communicated between network nodes and applications, can produce benefits above and beyond those provided by the individual pieces of equipment. This can help address the problems that occur out at the network edge.

With SWARM intelligence, an edge device does not have to be a single physical device, with implicit limitations on interfaces, resources and expansion. Instead, it can be made up of a number of discrete physical devices, with each one contributing its interfaces and processing capabilities to the collective. Together, these individual devices can then be viewed, in architectural and functional terms, as a single entity.

This approach solves the scalability problem which has been the ‘elephant in the room’ when discussing previous edge architectures. Doing so results in a quantifiable reduction in the total cost of ownership of an edge SWARM compared to other current solutions.

Five ways SWARM Intelligence reduces cost of ownership

Service oriented

Conventional edge devices are typically either relatively limited in their programmability providing, for example,  simple scripting support, or may require detailed user programming that requires a high level of familiarity with the device and its underlying hardware and software structure. SWARM devices support both scripting and detailed programming, but dramatically reduce the time and risks involved in business logic development by providing fully rewireable services, coupled to an ontology engine that allows services to be broadcast throughout the SWARM. User programming becomes, to a much greater degree, an exercise in the binding of trusted services and user modules, while also allowing for the extension of the available services and modules for inclusion in the local SWARM.

The generation of local business intelligence is further simplified by the provision of an internal continuous query engine, allowing users to filter and enrich underlying data passing through the SWARM by invoking calls using a comprehensive high level query language which includes the concepts of both time and number bound operations.

This combination of features dramatically reduces the time and risk involved in the development and deployment of the business logic, analytics or other user programming required at the edge. This shortens the overall time to revenue for systems based on SWARM.

Adding future interfaces and resources

In traditional edge devices it is necessary to define the characteristics of the device prior to installation. Parameters may include the number and type of physical interfaces to be provided, the bandwidth of the processor, the amount of RAM and the persistent storage required. This often leads to the deployment of devices that are more expensive than is really necessary, as a means of “future-proofing” the installation. Even then, an installation may prove to be inadequate for some future task, calling for replacement with more advanced equipment, potentially also incurring costs for retest or recertification of the installation.

A SWARM edge is already future proof. If a new interface is required, or if a new edge application calls for more processing power, memory or storage resources, additional nodes with the necessary features can simply be added to the pre-existing SWARM, with no effect on any of the existing interfaces or the applications built upon them. As new classes of device emerge, the SWARM will absorb and incorporate them, thus increasing the overall capabilities of the collective.

This means that deployed devices can be sized for the known requirements at the point of deployment, without risk to the investment being made at the time.

Installation Costs

SWARM technology can directly reduce the cost of integrating remote sensors and devices. In a traditional architecture, where the edge is a single physical device in a single location, connecting each sensor or subsystem requires another cable run. That can be made even more expensive if trenching is required, or there is a need for armoured or specialist cables. In a SWARM based system, a wireless node is connected to a sensor or device. The node then makes its data available to the SWARM, which provides a wireless path to the network gateway. This makes a cable run unnecessary.

Redundancy

The ability to add and use new interfaces and resources, along with the routing capabilities built into each SWARM device, makes SWARM incredibly flexible. It is easy to set up strategies to attach business logic to multiple interfaces, providing redundancy of outputs, or x-out-of-y voting on input data. Redundancy need only be added to those interfaces that truly require it. This is far cheaper and far less complicated than creating redundancy by duplicating the entire edge.

Managed device infrastructure

Each device within the SWARM supports local configuration and management. More importantly, SWARM also supports remote management from a central location. This dramatically reduces the number of site trips required for system maintenance.

A SWARM reports the status of connected devices and allows for the download of user programs to both individual devices and groups of devices. User programs are deployed in protected containers within the edge devices, and no user program can negatively impact services, interfaces or programs that are running outside those containers. If a user downloads a program that contains bugs, the program itself may crash. However, the edge device remains operational, and the user can remotely recover the situation.

SWARM devices also include the ability to support “zero touch” provisioning, automatically contacting a central server to obtain their initial configurations and user modules on first power up. To bring an unconfigured SWARM device into service, the device need only be physically installed and switched on. This reduces the number of operational spares needed to support a system, as standard SWARM devices can be substituted without any pre-configuration process. Additionally, the installer needs no special skills.

Conclusion

Like a beehive or an ant colony, SWARM technology lets individual devices contribute their abilities to the collective, even legacy equipment that was never designed to be a part of the Internet of Things. In doing so, SWARM technology provides massive scalability and the ability to easily integrate future, as yet undefined, interfaces and devices. SWARM can drastically reduce the costs of application development and deployment, installation, commissioning and maintenance out at the network edge.

RECENT ARTICLES

Make the Intelligent Choice: Embed X103 in Smart City Outdoor Devices

Posted on: April 25, 2024

The adage “less is more” is the current state of digital transformation, starting with existing technology that has already proven successful – and then further adapting and streamlining. The “smart city” embraces this end goal by digitalizing community services where we live and work, such as traffic and transportation, water and power, and other crucial

Read more

Industrial IoT adoption fuels growth in private cellular networks

Posted on: April 25, 2024

Mission-critical use cases are driving private IoT connection growth in key industrial markets like manufacturing, logistics and transportation. Industrial IoT (IIoT) customers are eager to digitalise critical use cases with high-powered, dedicated networks, making these industries leaders in private 4G and 5G adoption. According to a new report from global technology intelligence firm ABI Research,

Read more
FEATURED IoT STORIES

What is IoT? A Beginner’s Guide

Posted on: April 5, 2023

What is IoT? IoT, or the Internet of Things, refers to the connection of everyday objects, or “things,” to the internet, allowing them to collect, transmit, and share data. This interconnected network of devices transforms previously “dumb” objects, such as toasters or security cameras, into smart devices that can interact with each other and their

Read more

The IoT Adoption Boom – Everything You Need to Know

Posted on: September 28, 2022

In an age when we seem to go through technology boom after technology boom, it’s hard to imagine one sticking out. However, IoT adoption, or the Internet of Things adoption, is leading the charge to dominate the next decade’s discussion around business IT. Below, we’ll discuss the current boom, what’s driving it, where it’s going,

Read more

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, home automation using iot is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more

5 challenges still facing the Internet of Things

Posted on: June 3, 2020

The Internet of Things (IoT) has quickly become a huge part of how people live, communicate and do business. All around the world, web-enabled devices are turning our world into a more switched-on place to live.

Read more