LPWA vs LTE: the differences explained

Eran Eshed, co-founder and VP Marketing
and Business Development, Altair Semiconductor

As the Internet of Things (IoT) becomes larger and larger, the list of communications protocols vying to power the extensive wireless wide area networks (WAN) that the infrastructure will require grows both longer and more complex.

And the typical alphabet soup that tends to take shape in all areas of technology can cause even seasoned telecom professionals to head off to acronymfinder.com to seek counsel, says Eran Eshed, co-founder and VP Marketing and Business Development at Altair Semiconductor.

On one hand are the various LTE-based (Long Term Evolution) options, a series of advancements to technical specifications promulgated by 3GPP. While LTE has become synonymous with the faster 4G mobile data services now offered by many cellphone service providers, it also has three iterations specifically applicable to M2M/IoT that are optimised for progressively lower bandwidth and (therefore) optimal device power consumption requirements. These are Category-1, or Cat-1, Cat-0, both in early implementations, and Cat-M, which correlates to the upcoming 3GPP standard 13 release, but is unlikely to be commercially available before 2017.

In a bid to expedite this somewhat staggering development of LTE for IoT – often complicated by disagreements on the course of future standards – private vendors have sought to develop new wireless technologies from scratch, aiming to position themselves as “IoT optimised” for their low power and cost. Given that the IoT market is expected to comprise 5 billion device connections by 2022, consumer appetite is strong for a faster means to market.

LPWA (Low Power Wide Area), unlike LTE, is available to non-mobile network operators (MNOs) because it can operate over unlicensed, spectrum, including the <1GHz ISM bands, TV white-spaces and medical and industrial bands.  Closed-source, or proprietary, vendor technologies, such as SigFox and LoRa, stand out in this recently emergent area, creating, effectively, an additional potential IoT ecosystem, in addition to the more orthodox LTE space, and exponentially increasing the availability of potential network operators to enable IoT connectivity.

Significantly, using different frequencies opens the possibility of the creation of dedicated physical IoT-only networks, such as what SigFox is creating in France. Cost per connected unit remains the most significant hurdle to the growth and adoption of IoT, which is why the course of that protocol is charted heavily towards increasing power efficiencies, which translates into longer operating battery life. LPWA offers several benefits in this respect. Unregulated networks are easier and less costly to deploy. In addition, IoT-specific networks can be optimised for the low-payload environment in which applications often need to operate to ensure proper battery life.

There are also, however, substantial technical drawbacks that reduce their prospective usefulness for many IoT use-cases. These include lower immunity to interference; limited protocol support for key featured such as firmware updates and device management, security concerns, and often also encumbrances on allowable duty cycles and restrictions on whether devices can initiate communication or merely receive. There are also some vendor-specific reasons such as lengthy latency periods. Furthermore, not all IoT use-cases involve sensors and ultra-low data overheads.

Collectively or singularly these can prove fatal to several prospective IoT uses, many of which involve engagement with the government sector in the form of ‘smart city’ technologies or the enablement of business-critical functions, such as smart metering. A gas meter device that needs to be closed remotely within five seconds of receiving an event notification requires latency that most LPWA vendors cannot offer.

While LPWA offers several advantages that may appear immediately compelling to consumers, it is our opinion that the stability and standardisation of operating on the global LTE bandwidth will provide the most robust support for the future of M2M communications and IoT.

The author is Eran Eshed, co-founder and VP Marketing and Business Development at Altair Semiconductor.

About the author:

Eran Eshed is a developer of single-mode LTE chipsets. Altair’s portfolio covers the complete spectrum of cellular 4G market needs, from supercharged video-centric applications all the way to ultra-low power, low-cost IoT and M2M. Altair has shipped millions of LTE chipsets to date, commercially deployed on the world’s most advanced LTE networks including Verizon Wireless, AT&T and Softbank. The company’s customer roster includes some of the world’s leading OEMs and ODMs, including Hewlett-Packard, ASUS and D-Link, and most Asian ODM LTE product developers.

Comment on this article below or via Twitter: @M2MNow OR @jcm2m

FEATURED IoT STORIES

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, iot home automation is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more
RECENT ARTICLES

US businesses show IoT investment resilience, despite pandemic

Posted on: September 20, 2021

Despite the adversity caused by the COVID-19 pandemic, grounds for optimism remain for IoT spending in the US.

Read more

Tyk secures $35M investment to revolutionise software delivery for enterprises

Posted on: September 20, 2021

Tyk, a London-based global tech company, announced it has closed a $35M (€29.87M) growth equity funding round led by new investors Scottish Equity Partners (SEP), alongside existing investors MMC Ventures.

Read more