Bright Box launches self-driving car with neural network

A European vendor of connected-vehicle applications like Nissan Smart Car app in Middle East, and KIA Remoto app in Russia, announced the launch of a self-driving car solution with a neural network trained through computer games as well as real-life examples.

Remoto Pilot, a new self-driving car solution, features safe, reliable road/lane following as well as real-time detection and avoidance of various obstacles such as cars and pedestrians. The key enabling technology for high efficiency autonomous driving capability of Remoto Pilot is the use of stereo vision in combination with advanced computer vision algorithms based on neural networks. Combined with the use of Global Navigation Satellite System (GNSS) and high-definition (HD) maps, this technology enables the possibility of fully autonomous car operation.

Currently, Bright Box’s main product is Remoto, a turnkey Connected Car platform that helps car owners to manage their cars remotely via smartphones (starting the engine, opening/closing doors, car tracking), provides large amounts of data to automotive and insurance companies, including information about cases of car malfunction, mileage, driver’s behavior, road accidents, etc. Company’s customers include such car makers as Nissan, Toyota, KIA, Infiniti.

Game picturesToday the company announced launching autonomous driving solution designed to be a retrofit kit for existing cars.

Advanced computer-vision technologies, such as convolutional neural networks (СNN) with deep learning, in combination with stereo vision, can greatly enhance capabilities of self-driving cars. This technology allows for safe, reliable road/lane following, real-time detection and avoidance of various obstacles, such as cars, pedestrians etc.

The use of stereo vision (a pair of video cameras mounted on a car) allows for computation of distances to various objects in the field of view of the cameras. Thus, real-time assessment of the road situation by the car’s onboard computer becomes possible.

The training of a neural network involves the use of pre-computed representative sets of road situation video samples, referred to as training datasets.

One really amazing modern day technology that comes in handy for the neural network training is 3D computer graphics used in computer games. Such games, as GTA-V, with a large part of their gameplay involving driving on city streets, have a large number of extremely realistic city street views, as viewed from inside the cabins of driving cars, which makes them a very valuable source of high fidelity imagery that can be used to generate training datasets.

Two examples of training datasets, generated from GTA-V computer game, are shown below.

The original source images (shown on the left) are used to tell the neural network what various objects in a road scene look like, while the annotated images (shown on the right) are used to tell the neural network what kinds of objects are where.

Real-life training datasets, recorded from onboard cameras installed on real cars driving on real roads, are also used for neural network training. An example of a pair of images from a real-life training dataset is shown below.

Real-life training datasets, together with synthetic datasets generated from computer games, constitute a very efficient set of training samples used to train neural networks to analyse real-life road situations with high efficiency, thus providing the basis for safe and reliable autonomous driving on city streets.

One great advantage of this approach is the flexibility inherent in the neural network algorithms. While the neural network is trained on a limited number of samples, representing a limited number of road situations, it can correctly analyse a much larger number of road situations that differ in many ways from the training samples.

Neural networks can also be trained to measure distances from a stereo pair of cameras to various objects by using training datasets that include a number of pairs of images recorded from stereo cameras installed on real cars driving on real roads.

One common type of a sensor used in self-driving cars is a Lidar (a laser scanner that measures distances to surrounding objects), usually installed on a car’s rooftop.

aknl89f.jpgv f0i

The use of stereo cameras is an alternative to the use of Lidars. Both stereo cameras and Lidars measure distances to objects and can be used to generate depth maps that can be used for car trajectory planning.

Making a heavy emphasis on the use of advanced computer vision techniques, the company aims to develop technology that will eliminate the need for the use of Lidars.

Combined with the use of Global Navigation Satellite System (GNSS) and high-definition (HD) maps, this advanced computer vision technology enables the possibility of fully autonomous car operation.

Solution for OEMs

“We’ve got successful experience in connected-car solutions for remote car control and more than 250,000 cars connected. Today we work with a broad customer base among OEMs around the world (Europe, Middle East, Asia). The company is already negotiating solution supplies with OEMs and their partners, and hopes to increase the number of the company’s partners in the future. We also offer subscription based business model without significant R&D costs for OEMs”, said Bright Box’s CTO, Alexander Dimchenko.

Comment on this article below or via Twitter: @IoTNow_ OR @jcIoTnow

FEATURED IoT STORIES

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, iot home automation is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more
RECENT ARTICLES

Infineon and Rainforest Connection create real-time monitoring system to detect wildfires

Posted on: October 22, 2021

Munich and San Jose, California, 21 October, 2021 – Infineon Technologies AG a provider of semiconductors for mobility, energy efficiency and the IoT, announced a collaboration with Rainforest Connection (RFCx), a non-profit organisation that uses acoustic technology, Big Data and Artificial Intelligence / Machine Learning to save the rainforests and monitor biodiversity.

Read more

Infineon simplifies secure IoT device-to-cloud authentication with CIRRENT Cloud ID service

Posted on: October 21, 2021

Munich, Germany. 21 October 2021 – Infineon Technologies AG launched CIRRENT Cloud ID, a service that automates cloud certificate provisioning and IoT device-to-cloud authentication. The easy-to-use service extends the chain of trust and makes tasks easier and more secure from chip-to-cloud, while lowering companies’ total cost of ownership. Cloud ID is ideal for cloud-connected product companies

Read more