Learning the data, automatically – Part 2

Andrew Lee, head of Market Intelligence and Analysis
at Octo Telematics

Part one of this series looked at how the data collected by autonomous cars can be analysed and used by insurers and car manufacturers to constantly develop and improve both vehicles and their risk. The next step is to consider how that data can be used and ‘learnt’ by the cars themselves.

All of us have ‘pre-planned’ routes in our heads. It might be the school run in the mornings and evenings, or the weekend trip to the shops, it might even be a regular visit to a relative. These are roads that we know well and drive all the time. When we’re on these familiar journeys, it can sometimes feel like we’re driving on autopilot.

But we’re not. The simple act of having driven a journey hundreds of times means that we’ve learned the route, not only in terms of where we drive, but also in terms of how we drive it. We may remember a time that someone pulled out in front of us at a roundabout and, following that, always approach that particular stretch with caution, says Andrew Lee, head of Market Intelligence and Analysis at Octo Telematics.

We may notice that the left wheel always slips at the same corner and learn to give it a wider berth to make sure we avoid that patch of uneven asphalt. This is a continuous process as we programme the ‘quick trip to the shops’ into our internal GPS with even more data every time we drive that route.

This has significant implications for automakers, road users and insurers.

Autonomous cars will have to do the same thing. They will have complex tracking systems in place to find the best route to our destination and it’s likely that we’ll be able to preset frequent routes. However, just like a human driver, they will also learn from every trip they do.

If a car drives to the shops 100 times, it may collect data that showed that there was an issue at a roundabout on 45 of those trips and the car will be able to understand the conditions that lead to the issue. From then on, the car will approach that roundabout differently depending on those conditions.

The variables that go into planning a route will go beyond issues such as the weather conditions and actually learn such things as the condition of the road in certain spots. Every trip will yield new and fresh data to be processed by the algorithms and improve the safety and ‘driveability’ of each route. Of course, without machine learning and ever-improving AI, storing, sorting and analysing this data will be next to impossible.

However, we aren’t always on the same routes. If we’re going on a long road trip or even just visiting a friend in their new house, this will be the first and potentially only time we travel to that destination. For the human driver, this can be a fraught affair. Not only do we have to make sure we don’t get lost, but at the same time we’re adjusting to the conditions of an unfamiliar road.

In this respect, the autonomous car has the advantage. While this may be the first time for one person travelling this way, it’s not going to be the first time it has ever been driven. This is similar to the sharing of ‘the knowledge’ of taxi drivers. However, a taxi driver cannot reference updated data in real time as a connected car will be able to.

Autonomous cars will be constantly recording data and uploading it to the cloud. Agreements between companies will make this data available to all road users. Therefore, even if a vehicle has never travelled a road before, it can still make use of the combined wisdom of all the cars that have been there first.

OEMs in Germany such as BMW, Audi and Daimler are in the process of creating a data-sharing partnership to achieve just that. Building a constantly-learning ‘database’ in the cloud which vehicles can access immediately is a crucial first step to creating the smart driving ecosystem.

But there will be a transition period. As autonomous cars grow in number, there will be a point where the roads are shared by driverless and traditional vehicles. When there are no more traditional vehicles, all vehicles on the road will communicate with each other and the infrastructure around them.

However, during that transition period, there will be a number of vehicles that will effectively be ‘blind’ and unable to communicate. During this period, autonomous cars will have to carry the burden of road safety and be armed with a barrage of telematics and visual sensors to locate themselves and any errant human drivers not fitting into the automated ecosystem. These sensors will gather data to register the autonomous vehicle’s place on the road, as well as the position of other road users in order to anticipate and react to traffic patterns.

This ‘reactive’ use of sensors will still yield data that can be learnt by the car and other road users, however. For example, if there is a traditional car that has broken down and is causing an obstruction, this can be communicated with other autonomous vehicles for inclusion into their journey planning. This will be achieved without any data being transmitted from the stricken vehicle itself.

As the smart city model becomes more developed, however, there will be less need for ‘defensive’ telematics, and the sensors will be used purely for communicating with the automated ecosystem. There will be less need for redundant, backup systems, lowering the initial manufacturing costs and decreasing potential repair costs in case of a claim.

It’s important to remember the real mission of a vehicle. It’s not just about getting from A to B, but achieving this in the safest and often quickest way possible—safety being the primary concern. Insurers will be very interested in the ever more detailed route data that becomes available.

The more granularity and understanding of exactly how roads are being driven and need to be driven, the more accurately insurers can price risk. Using algorithms and machine learning to develop their databases will help them make sure that they are providing the appropriate level of cover at the right cost.

The safe implementation of driverless cars will only be achieved through amounting incredible amounts of data that can be updated and accessed in real time. Increasingly sophisticated machine learning will provide us with the ability to effectively utilise this data, gathered from the increasingly sophisticated hardware of the vehicles themselves.

The author of this blog is Andrew Lee, head of Market Intelligence and Analysis at Octo Telematics

Comment on this article below or via Twitter: @IoTNow_ OR @jcIoTnow


DANA bolsters financial inclusion in Indonesia with HERE Technologies

Posted on: August 9, 2022

Jakarta, Indonesia. 04 August, 2022 – HERE Technologies, the location data and technology platform, announced that DANA, one of Indonesia’s digital wallet services, is utilising HERE location services to bolster inclusive financial services in the country.

Read more

Putting fleets in the fast lane: AT&T Fleet Complete launches FC Hub, a suite of next-gen fleet management tools

Posted on: August 9, 2022

Dallas, United States. 05 August, 2022 – Fleet Complete is introducing AT&T Fleet Complete FC insights solution suite, a big data IoT platform with web and mobile apps for fleets to monitor and manage all aspects of their mobile operations.

Read more

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, home automation using iot is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more

5 challenges still facing the Internet of Things

Posted on: June 3, 2020

The Internet of Things (IoT) has quickly become a huge part of how people live, communicate and do business. All around the world, web-enabled devices are turning our world into a more switched-on place to live.

Read more

What is IoT?

Posted on: July 7, 2019

What is IoT Data as a new oil IoT connectivity What is IoT video So what’s IoT? The phrase ‘Internet of Things’ (IoT) is officially everywhere. It constantly shows up in my Google news feed, the weekend tech supplements are waxing lyrical about it and the volume of marketing emails I receive advertising ‘smart, connected

Read more
IoT Newsletter

Join the IoT Now online community for FREE, to receive: Exclusive offers for entry to all the IoT events that matter, round the world

Free access to a huge selection of the latest IoT analyst reports and industry whitepapers

The latest IoT news, as it breaks, to your inbox