Factories with a mind of their own

Human-machine collaboration is now being enabled on the same factory floor

That’s right, machines don’t just analyse data but can talk to humans like other humans would. Except, as L&T Technology Services says, they can move from talking like a layperson to spitting the kind of intelligence Albert Einstein and Stephen Hawking are known for.

All because artificial intelligence (AI) has matured. From $272.5 million in 2016, revenues from AI in manufacturing are all set to shoot up to $4,882.9 million by 2023 at a CAGR (compound annual growth rate) of no less than 52.42 percent. Artificial intelligence (AI), machine learning, deep learning, and neural networks are driving technology innovations, the kind we’ve only imagined before. Deep learning techniques for instance are helping companies with signal recognition, data mining, voice and image recognition, while machine learning is enabling them to make sense of technological resources such as data from sensors and the Internet of Things (IoT).

On the industrial front, AI-powered machines are using structured and unstructured data to overhaul manufacturing business models and strategies. With data volumes only burgeoning, enterprises are even identifying performance improvement areas to make smart factories even smarter.

AI-driven performance improvement strategies

Real-time monitoring and machine learning are together optimising factory operations by providing actionable insights into workloads at the machine level and production schedule performance. Obtaining this knowledge on a real-time basis has only helped engineers take better decisions for managing machines and overall operations. If we go by predictions, manufacturers will adopt machine learning and analytics to improve predictive maintenance by 38 percent over the next five years.

A German industrial manufacturing major has already started using neural networks to monitor, record, and analyse its steel plants’ operations. Sensors embedded in its machines consistently measure different variables and enable data-driven decision making. The AI system has managed to improve the performance of gas turbines and reduce emissions by 10 to 15 percent beyond what experts could achieve.

The oil & gas (O&G) sector is another prime example. In a prominent study, a global management consultancy collected hundreds of gigabytes of data over three years from a mature production platform equipped with 5,000 sensors. The data scientists working on the project used advanced analytics to enhance the offshore plant’s predictive maintenance practices. They were able to predict the occurrence of oil-in-water incidents, gas compressor train failures with over 70 percent accuracy, and the probability of pressure build-up in the well.

AI as a facilitator in smart plants

For some time now, smart manufacturing plants have been leveraging industrial robotics and automation to enhance operational efficiencies. In 2017, these technologies witnessed remarkable growth compared to 2016. Come 2018, the situation has only brightened as AI has made robots and automated machines more intelligent, perceptive, adaptive, and reactive.

Take the case of Amelia, an intelligent virtual engineer, created by an American technology start-up working on cognitive technologies and enterprise automation. This virtual agent utilises advanced machine learning models to advise clients without any human assistance. To input data into her system, Amelia has been empowered to read documents, learn from observations, and follow processes based on business analytics.

Machine learning technologies can assist manufacturing plant operators to do even more. These solutions not only help in distilling data-driven insights and running predictive maintenance and machinery inspection, but also moving materials and implementing production planning, field services, reclamation, and quality control.

The automotive industry was among the first to harness AI in manufacturing operations. Carmakers have deployed cobots with computer vision technology that enable human-machine collaboration on the same factory floor, eliminating the need to alter factory design. For quality control, companies have been quick to use AI-enabled visual quality checkers, which have boosted defect detection by about 90 percent. Besides this, AI has helped increase R&D productivity by 10 to 15 percent and save inventory costs by reducing forecasting errors by 30 to 50 percent.

The future is competitive …

While manufacturing organisations globally are still in the process of learning what AI can do for their business, China and the US are racing ahead to gain competitive advantage through AI. The US has about 850,000 employees working on AI with more than half of them having over 10 years of experience. China, on the other hand, has 50,000 employees with 40 percent of them having less than five years of experience. The tables may turn soon, considering China’s dogged efforts to mass-manufacture neural network processors and use the chips to enhance manufacturing operations. By 2025, we might just see China dominate the AI market.

The phenomenon has already found its footing. A leading Chinese smartphone manufacturer has employed an AI consultancy to help improve their factory efficiency and deployed more than 40,000 industrial robots to work with humans to produce smartphones.

… And about learning opportunities

As AI becomes commercialised, data scientists are finding more opportunities to closely study the technology’s potential and applications. The next logical step is toward developing energy-efficient deep neural networks and building an AI-powered automated factory where only robots work with humans at a safe distance. To realise the latter, an American automotive major recently bought a German engineering firm that specialises in fully automating factory floors.

Research is also underway to make AI more human-like. A non-governmental organisation that develops friendly AI applications is working with reinforcement learning algorithms to train AI agents to learn from their mistakes and act accordingly.

Despite the spike in the implementation of AI-enabled machines, there remains no regulatory authority to manage machine intelligence at the government level. While AI has still not achieved human intelligence capabilities, it is a good time to begin exploring this road. At the institutional level, investments have tilted toward researching influential algorithms and exploring other AI opportunities.

It’s hard envisioning the future with AI now at our behest. We’ll leave it to your imagination to extrapolate today’s possibilities to those of tomorrow.

This blog is by L&T Technology Services. Don’t miss their webinar on Tuesday, April 17th, 2018 – Perceptive, Adaptive & Reactive: AI in manufacturing

Comment on this article below or via Twitter: @IoTNow_OR @jcIoTnow

 

FEATURED IoT STORIES

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, iot home automation is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more
RECENT ARTICLES

Automotive dual high-side gate driver EiceDRIVER 2ED4820-EM with SPI protects dependable 48 V battery systems

Posted on: January 21, 2022

Electrical Vehicles, trucks, e-wheelers and battery packs for solar panels. These Li-ion battery systems need to be protected against negative and positive voltages. In addition, these batteries must be able to quickly and reliably disconnect from loads within microseconds, in the event of an overcurrent. Since a battery unit may not be dedicated to one vehicle, status

Read more

Qualcomm with SB Technology and Cybertrust Japan to proliferate smart cities and 5G IoT solutions

Posted on: January 21, 2022

18 Jan, 2022 – Cybertrust Japan Co., Ltd., SB Technology Corp., and Qualcomm Technologies, Inc., announced they intend to collaborate to support the deployment of smart solutions through the Qualcomm IoT Services Suite offering to help businesses and entities looking to adopt and integrate smart solutions initially in Japan, with intent to expand globally in

Read more