Why context is king when applying data collection

It’s no secret that data collection is important for generating valuable insight that helps plant managers improve efficiency in industrial systems. However, what seems unknown to many in the industry is the importance of understanding the context of the data being analysed.

Here, George Walker, managing director of industrial control and automation provider Novotek UK and Ireland, explains why applying context to your data is the difference between insight and statistical blindness.

Tunnel vision is a problem across a variety of fields, from sports to industry. It is easy to get fixated on a single goal and to forget to take a step back for a wider view of a situation. Yet, taking this step back can provide invaluable insight and understanding of the reality of a situation.

Let’s take a hypothetical scenario. Imagine that a maintenance manager has a machine that is bending wires. These wires have to bend to a very accurate angle to properly work. However, the machine isn’t bending them properly at certain times of the day, causing the business to produce faulty goods that have to be discarded.

To fix this issue, the maintenance manager brings up the data collected by the device’s onboard software. The manager then analyses the data with a digital twinning platform. Looking at the analysis, it becomes apparent that the machine is vibrating anomalously at certain hours of the day. The manager dismantles the machine, reassembles it and even runs it in an isolated scenario, but is still unable to find the source of the problem.

George Walker

In this instance, if the manager had taken a moment to take a step back and looked for context, they may have realised that the anomalous vibrations coincided with the activation period of a nearby piece of heavy machinery. There is nothing wrong with the machine in question, but its surrounding context reveals the cause of the error. This is why context in data collection is vital.

With an array of smart sensors and devices, paired with a digital twinning system like GE Digital’s Predix platform, across the whole production line, the manager could have clearly seen the correlation by viewing the data in context. Another method of achieving contextual understanding would have been by comparing the machine with other similar ones in different plants.

This shows why digital twinning is such a powerful tool. Being able to recreate an entire plant in a digital model breaks silo mentality. This allows managers to have holistic insight, which reveals issues that were previously not apparent. Whatever the issue, it is evident that context in data collection matters. Being able to analyse systems is now a reality and should be used to the full extent of its potential.

With potential to reduce waste and unnecessary expenditure, digital twins will allow stronger operations. With context being easily achievable in the modern industrial arena, it no longer needs to be a trade secret among industrial businesses. And by sharing this knowledge, more businesses can make their smart networks smarter, their operations more efficient and their production processes more productive.

The author of this blog is George Walker, managing director, Novotek

Comment on this article below or via Twitter: @IoTNow_OR @jcIoTnow

Recent Articles

Phishing attacks increase 718% in Europe, says Allot research

Posted on: March 2, 2021

Allot Ltd., a global provider of network intelligence and security solutions for service providers and enterprises worldwide, has released its 2020 Europe Cyber Threat Report.

Read more

How 5G will turbocharge IoT growth

Posted on: March 2, 2021

5G is bringing new rich streaming services to the cell phone market, catering for massive increases in broadband use. At the same time, it is set to transform the IoT market, bringing both rich new data services as well as enabling huge new volumes of connected devices. While there is a natural limit to the

Read more