Why direct connection is the next phase of industrial IoT

Carsten Gregersen of Nabto

The factory floor has certainly come a long way. Rather than traditional production lines that operate in silos, industry today leverages cloud-connected devices to enable data collection and business insight on a massive scale.

While in the past, businesses were wondering how to build an IoT platform, it’s now easier than ever before, says Carsten Rhod Gregersen, CEO and founder of Nabto.

As a result, billions of devices from networked sensors to wearables and robotic helpers are now generating incredible amounts of information to improve business efficiency and overall performance using the power of the Internet of Things.

At the same time, though, this smart industrial revolution is more reactive than proactive. The vast majority of devices only allow for one-way communication between the user and the device, meaning that devices can report back to the user but the user cannot respond in kind. Of course, the devices help to deliver big data insights, but only after thorough and precise analysis, and even then they do not allow for real-time adjustments.

This does not need to be so. Remote device access is possible in the next stage of industrial IoT and promises a swathe of benefits, from troubleshooting or updating devices without physically visiting them to acting immediately on predictive maintenance recommendations.

Moreover, as seen from the context of the pandemic, remote connections allow business leaders to not only see the data from their smart industrial devices but respond in real-time from anywhere in the world. If the first stage of industrial IoT was about collecting data for actionable insight, the next stage is certainly about establishing a direct user-device connection to improve capabilities.

Stage one: The benefits of big data

The data-fueled factories of today largely in the industries of manufacturing, healthcare and retail provide visibility regarding the efficiency of factory processes and performance over time by collecting data to drive artificial intelligence and predictive analytics. Unlocking these insights from smart industrial devices, however, is no mean feat.

Connected devices across all sectors generate astronomical amounts of information (79.4 billion terabytes by 2025, the equivalent to the data generated by the Hubble Telescope if it operated for about 8 billion years) and processing this data into actionable insights requires multiple steps.

Machine learning, for example, is helpful in predicting outcomes from data and finding hidden patterns, while visualisation tools help to simplify the results by presenting them in a graphical and easier to understand way. These steps work to sort actionable data from the unactionable, with business leaders usually inspecting relevancy, context, and fit.

When done right, the end result can boost long-term performance with predictive analytics, customer behaviour updates and future trend insights. At the same time, however, the immediate benefits of big data collection efforts remain constrained in the short-term due to the limitations of most contemporary connection configurations.

Stage two: Direct device communication

The industry has so far focused on merely collecting the data of industrial devices, and not on the immediate action on the data. New device configurations are beginning to change this. Direct device communication platforms between the device and the user, and between the user and the device, enable business leaders to act immediately on the data. This is an important improvement in three ways.

First, direct device communication enables businesses to go fully remote. Two-way connections allow actions that would normally be performed on-site like diagnostics, troubleshooting, programming and updating to save time and improve performance.

Rather than sending a team of engineers to manually update each IoT device, this next stage of smart industrial IoT allows any change in real-time, drastically cutting time and money spent on operations. This can play a vital role in improving any project’s uptime and overall performance.

Second, real-time device information leads businesses to act straight away upon predictive maintenance suggestions. For example, if businesses note unusual vibration on a compressor, they can instruct the device to decrease power so that the likelihood of a total breakdown before maintenance is minimised. Likewise, if readings show that something like a fridge is starting to fail, the user can intervene before it happens and set temperature cycles to deliver optimal performance.

Third, and certainly tied to the previous two points, the potential for maximum efficiency. Whether it be less manual outlay to make device changes or the resulting bottom-line benefits, the ability to connect directly with individual devices simply makes life easier for smart industrial business leaders. And, especially in the age of coronavirus, the business value of efficiency is tough to understate.

Stage three: The future of smart industry

The addition of connected devices onto factory floors and into modern industrial processes has been a rapid evolution. In mere decades, business leaders can now leverage sensors and devices to dig deep into data and improve their operations.

However, the status quo is far from perfect. Technology is an eternal evolution, and it is obvious that smart industrial business leaders going forward will be best served with an additional layer of functionality.

What is also clear, however, is that there are important caveats for business leaders to consider when implementing devices with two-way communication. Security, for instance, will need to be front of mind when enabling devices that can be instructed remotely.

Latency is another asterisk. To tackle this, business leaders will need to decide where they stand on the debate between RTOS vs OS as well as be confident that any device instructions will be relayed immediately. This is true especially if the device itself will be damaged or broken if the command is not carried out straight away.

In the scheme of things, though, these elements can be adequately safeguarded against and should not prevent business leaders from investigating devices with direct communication capabilities. After all, the promise of remote access offers less physical outlay, real-time commands, and maximum efficiency.

The author is Carsten Rhod Gregersen, CEO and founder of Nabto, a P2P IoT connectivity provider that enables remote control of smart industry IoT devices with secure end-to-end encryption.

Comment on this article below or via Twitter: @IoTNow_OR @jcIoTnow

RECENT ARTICLES

Inpixon and Schauenburg Systems team up to sell real-time location technologies to mining companies in South Africa

Posted on: September 26, 2022

Palo Alto, United States – Inpixon, the Indoor Intelligence company, announced a collaboration agreement with Schauenburg Systems, an original-equipment manufacturer of mine safety systems and equipment, to sell Inpixon’s real-time location technologies to mining companies in South Africa. Under the agreement the parties will aim to achieve sales of hundreds of thousands of nanoLOC chips and other core

Read more

How will OEMs manufacture the smart factories of the future?

Posted on: September 23, 2022

“By 2025, there will be approximately 27 billion connected IoT devices. Someone is going to have to manufacture these, and OEMs are gearing up to enable as many functions as possible to be integrated into the devices they build.” REGISTER NOW TO READ IoT relies on manufacturing efficiency to get massive volumes of devices out

Read more
FEATURED IoT STORIES

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, home automation using iot is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more

5 challenges still facing the Internet of Things

Posted on: June 3, 2020

The Internet of Things (IoT) has quickly become a huge part of how people live, communicate and do business. All around the world, web-enabled devices are turning our world into a more switched-on place to live.

Read more

What is IoT?

Posted on: July 7, 2019

What is IoT Data as a new oil IoT connectivity What is IoT video So what’s IoT? The phrase ‘Internet of Things’ (IoT) is officially everywhere. It constantly shows up in my Google news feed, the weekend tech supplements are waxing lyrical about it and the volume of marketing emails I receive advertising ‘smart, connected

Read more
IoT Newsletter

Join the IoT Now online community for FREE, to receive: Exclusive offers for entry to all the IoT events that matter, round the world

Free access to a huge selection of the latest IoT analyst reports and industry whitepapers

The latest IoT news, as it breaks, to your inbox