How to overcome security challenges in age of IoT

Marco Guadalupi of Sateliot

The Internet of Things (IoT) is rapidly transforming the way we live and work. Smart devices are becoming increasingly common in our society, infiltrating sensitive areas of our lives, like our homes and our finances. The business world and economic activities have been no exception, and industries like water management, agriculture, logistics and other fields have become progressively more connected to the web. Although the adoption of IoT is not yet as widespread as it could be, it is expected to grow significantly in the coming years. As this technology becomes more ubiquitous, it is crucial to address the security challenges that come with it to protect IoT data from potential threats and attacks, says Marco Guadalupi, CTO and co-founder of Sateliot.

On a societal level, we are already educated to protect our personal and organisational data from breaches. In the same vein, embracing good security practices will be essential to protect the sensitive information transmitted by IoT devices. We are aware of the sharp increase in cyberattacks on confidential data, and even though policies are being made to prevent such breaches, the human factor is equally important to stop these attacks. However, when it comes to IoT, there are some policy gaps that have to be addressed at the highest level to work with solutions from top to bottom.

Several well-known organisations, including the Open Web Application Security Project (OWASP), IoTA and the IoT Security Foundation (IoTSF), have been the first line of defense against data breaches and cybercrime. However, they have failed to provide a set of recommendations for IoT data and have not specified the necessary protective steps to implement them. Moreover, the proposed recommendations are limited to the security and privacy of IoT devices on the terrestrial network (TN). Threats against IoT such as Denial of Service (DoS), Man-in-the-Middle (MitM) attacks and cyberattacks like the Mirai botnet have been left unchecked and unregulated.

Given the rapid development of global communication networks for IoT devices, satellite communication has become increasingly significant. This development means that there is an urgent need for IoT device security over non-terrestrial networks (NTN). While several ideas have been discussed to solve the security issues of integrated NTN-terrestrial networks, quantum technology might provide an appealing solution to IoT data security, especially in the protection of those assets that vertebrate our social, economical and political systems.

How Quantum technology can secure IoT data transmission in critical assets 

Quantum key distribution (QKD) is an alternative to algorithm-based cryptography that provides unconditional security based on the principles of quantum mechanics. QKD works by encoding information on the quantum state of photons and sending them to a receiver. By allowing random keys to be shared between authorised users, such as an onboard satellite and the user terminal on the ground co-located within QKD terminal, QKD makes it possible to establish private networks without the need for a pre-provision manual process for pre-shared security keys.

Furthermore, QKD has been shown to be secure against attacks based on computational complexity, which makes it an attractive alternative to traditional security and cryptographic methods, based on the complexity of the mathematical problems. In the case of QKD, any attempt to intercept the photons and measure their quantum state would cause a disturbance that would be detected by the receiver, which can alert the presence of an eavesdropper to both parties.

The main challenge in implementing QKD is the requirement of a dedicated optical physical link between the sender and the receiver. This can be achieved by using fiber optic cables or free-space communication, but both methods have limitations that make them unsuitable for certain applications. Otherwise, QKD involves sending photons through the atmosphere, which can be affected by various environmental factors such as weather conditions, turbulence, and atmospheric absorption.

Nevertheless, the implementation of a QKD to protect the data retrieved from IoT devices, especially from those applied to monitor sensitive data such as those dedicated to real estate security, transportation of goods, or health conditions could be highly effective to avoid breaches. This is of particular importance when it comes to critical assets connected to industrial IoT, such as nuclear power stations, military facilities, tax and government institutions, banks and financial corporations, and other fields where a security breach can cause major damage.

QUDICE Project: Quantum technology as a European priority

In order to overcome these limitations and extend the range of QKD, researchers have proposed using satellite-based communication networks. Besides the development of reliable quantum devices, there are more challenges to overcome, such as scalability issues and the need for standardised protocols. On the flip side, academia, industry and governments have already joined their efforts collaborating in the project QUDICE, launched in January 2023, to address these challenges and ensure the practical implementation of secure quantum communication for critical assets from the industrial IoT environment.

The QUDICE Consortium, standing for Quantum Devices and Subsystems for Communications in Space, is a collaborative effort from eleven partners from six European countries, including the University of Padova, the Sorbonne University, and the University of Malta; the ICFO and Fraunhofer research institutes; and technology companies like Stellar Project, ThinkQuantum, QUSIDE, Thales Alenia Space, Argotec, and Sateliot.

The project aims to advance the field of space-based quantum communications by developing the technologies and systems components and subsystems that are necessary to implement QKD in satellites. Some of the goals set by the project are the development of a Quantum Random Number Generator, a satellite Pointing, an Acquisition and Tracking system, an Entangled Photon Source, a 5G system for QKD post-processing support and 5G QKD-secured connectivity service, and also, the simulations required to assess the performance of the developed quantum satellite communications components.

Having seen the scale of the project, it is no wonder that quantum communication infrastructure has become a priority for Europe to maintain its competitiveness in the global race for quantum technologies. This especially given that the United States and China are heavily investing in its development, lured by the potential for significant economic, military and strategic benefits. So far, the objectives of QUDICE are to develop the first prototypes by the end of 2023, and to conduct testing in 2025. Not to say that as we evolve towards the next generation of networks, such as 5G and 6G, satellite-based QKD systems will provide better security levels.

In conclusion, the security of IoT data is of utmost importance. It is essential to establish symmetry and coordination in the processing and security of this information to protect it from unauthorised access. The lack of widely acknowledged security and privacy rules and suitable countermeasures makes it difficult for IoT stakeholders to create safer systems, endangering the viability of these applications. By utilising QKD, we can establish private networks with inviolable security and ensure that IoT data in critical assets is adequately protected.

The author is Marco Guadalupi, CTO and co-founder of Sateliot.

Comment on this article below or via Twitter: @IoTNow_OR @jcIoTnow

RECENT ARTICLES

WISeKey launches SeyID Digital Identity platform in Seychelles

Posted on: April 23, 2024

WISeKey has announced it has the project to deliver a new Digital Identity platform, “SeyID”, by the government of Seychelles. SeyID will be linked with different national initiatives covering eGovernment, eTourism and eHealth.

Read more

Smart home technology saves money and helps protect the planet

Posted on: April 22, 2024

In the global battle against climate change and to be more sustainable, the quest for energy efficiency has taken centre-stage. The focus on sustainability is an increasing emphasis on humanity’s finite resources and the effect of our energy-consumption habits on the world around us. This heightened awareness is leading to a radical rethinking of how

Read more
FEATURED IoT STORIES

What is IoT? A Beginner’s Guide

Posted on: April 5, 2023

What is IoT? IoT, or the Internet of Things, refers to the connection of everyday objects, or “things,” to the internet, allowing them to collect, transmit, and share data. This interconnected network of devices transforms previously “dumb” objects, such as toasters or security cameras, into smart devices that can interact with each other and their

Read more

The IoT Adoption Boom – Everything You Need to Know

Posted on: September 28, 2022

In an age when we seem to go through technology boom after technology boom, it’s hard to imagine one sticking out. However, IoT adoption, or the Internet of Things adoption, is leading the charge to dominate the next decade’s discussion around business IT. Below, we’ll discuss the current boom, what’s driving it, where it’s going,

Read more

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, home automation using iot is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more

5 challenges still facing the Internet of Things

Posted on: June 3, 2020

The Internet of Things (IoT) has quickly become a huge part of how people live, communicate and do business. All around the world, web-enabled devices are turning our world into a more switched-on place to live.

Read more