Google Glass is far more than the sum of its parts, IHS teardown reveals

Teardown analysis is a useful tool for understanding the component and manufacturing cost of electronics devices—but it doesn’t always tell the whole story of the value of a product.

Case in point is Google Glass, which sells for $1,500—but has hardware and manufacturing costs that amount to just $152.47, according to a dissection of the product conducted by the Teardown Analysis Service at IHS Technology . Does that mean that Google is pocketing a sky-high margin of 90 percent on each Glass sale?

Not by a long shot.

“As in any new product—especially a device that breaks new technological ground—the bill of materials (BOM) cost of Glass represent only a portion of the actual value of the system,” said Andrew Rassweiler, senior director, cost benchmarking services for IHS. “IHS has noted this before in other electronic devices, but this is most dramatically illustrated in Google Glass, where the vast majority of its cost is tied up in non-material costs that include non-recurring engineering (NRE) expenses, extensive software and platform development, as well as tooling costs and other upfront outlays. When you buy Google Glass for $1,500, you are getting far, far more than just $152.47 in parts and manufacturing.”

Looking through the Glass

Google Glass carries a BOM of $132.47. When the $20.00 manufacturing expense is added, the cost to produce the head-mounted computer rises to $152.47.

Prototypical

Although thousands of units are in the hands of users, Google Glass is not yet generally available through retail. The pre-mass-market status of Google Glass is evident by examining its design.

“Today’s Google Glass feels like a prototype,” Rassweiler said. “The design employs many off-the-shelf components that could be further optimized. If a mass market for the product is established, chip makers are expected to offer more integrated chipsets specific to the application that will greatly improve all aspects of performance, including processing speed, energy efficiency, weight and size. Future product revisions are sure to make strides in all of these areas.”

Last year’s model

Most of the integrated circuits (ICs) in Google Glass are mature when compared with recent flagship smartphone designs. For example, the Texas Instruments Inc. OMAP4430 apps processor used in Google Glass is made with 45-nanometer (nm) semiconductor manufacturing technology—two generations behind the 28nm chips employed in the latest flagship smartphones.

The use of more cutting-edge ICs could yield future Google Glass products that are smaller, lighter, more energy-efficient and less costly to produce than the current model.

High cost for LCOS

The second most expensive single component in Google Glass is also its most defining feature: its head-mounted liquid-crystal on silicon (LCOS) projector display. IHS estimates the cost of the Himax Technologies Inc. LCOS projection element made by Taiwan’s Himax Technologies Inc. at $20.00, accounting for 15 percent of the total Glass BOM.

“The LCOS display is the sine qua non of the Glass,” Rassweiler noted. “Just as e-readers wouldn’t exist without their e-Ink screens, Glass wouldn’t be possible with the LCOS display. The display is pretty slick, providing a near-eye viewing experience that must be seen to be believed.”

Texas Instruments inside

Texas Instruments components dominate the Glass design, with the semiconductor supplier contributing the apps processor, power management IC, audio codec, battery fuel gauge and regulator ICs. Altogether, TI accounts for an estimated $37.90 worth of components identified so far in the Glass, representing 29 percent of the BOM.

Sensory overload

Glass includes two accelerometers: one from STMicroelectronics and another from InvenSense Inc. Accelerometers are commonly used to detect motion in electronic devices, such as smartphones and video-game controllers. Given that smartphones generally incorporate just one multiaxis accelerometer, the use of two of these devices represents an interesting and unusual design choice that must be further investigated to be understood.

Premium rush

The frame of the Glass represents the single most expensive component of the device, at $22.00, or 17 percent of the BOM. The frame is made of titanium, a highly durable and expensive material used in high-performance military aircraft and in some eyeglass frames. However, titanium is rarely used in commercial electronic devices analyzed by the IHS Teardown Analysis Service.

“The frame is just one aspect of how Google is presenting Glass as a premium product,” Rassweiler noted. “The quality of the packaging and accessories, along with how the box contents are staged, gives the whole Google Glass experience a very high-end feel and appeal.”

RECENT ARTICLES

How new eSIM technologies and specifications can accelerate IoT uptake

Posted on: May 8, 2024

The Internet of Things (IoT) market has grown steadily over the past decade, unlocking new possibilities across diverse industries, driven by innovations in enabling technologies, such as eSIM. However, until

Read more

Iveda receives initial order of 1,000 LevelNOW units from Australian oil giant

Posted on: May 8, 2024

Iveda has announced the launch of LevelNOW, a next-generation tracking and monitoring solution for efficient liquid storage management. LevelNOW targets oil and gas companies, industrial and commercial organisations, government agencies

Read more
FEATURED IoT STORIES

What is IoT? A Beginner’s Guide

Posted on: April 5, 2023

What is IoT? IoT, or the Internet of Things, refers to the connection of everyday objects, or “things,” to the internet, allowing them to collect, transmit, and share data. This

Read more

The IoT Adoption Boom – Everything You Need to Know

Posted on: September 28, 2022

In an age when we seem to go through technology boom after technology boom, it’s hard to imagine one sticking out. However, IoT adoption, or the Internet of Things adoption,

Read more

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, home automation using iot is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for

Read more

5 challenges still facing the Internet of Things

Posted on: June 3, 2020

The Internet of Things (IoT) has quickly become a huge part of how people live, communicate and do business. All around the world, web-enabled devices are turning our world into

Read more