CAT-M1 vs NB-IoT – examining the real differences

CAT-M1 vs NB-IoT

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

NB-IoT vs Cat-M2

Subsequently, the market became fragmented and it is fair to say that confusion abounds. Indeed, the efforts being made to further each standard as well as the time and money at stake are pushing chipmakers, hardware providers and service networks to examine carefully each option. First, let’s look at some of the objective differences in the chart below.

ParameterCAT-M1 (CAT-M)NB-IoT
Bandwidth1.4MHz200KHz
Modes of OperationIn-bandIn-band, Guard-band, standalone (GSM bands)
Duplex ModeHD-FDD / FDD / TDDHD-FDD (TDD under discussion)
Peak Data Rate375Kbps (HD-FDD), 1Mbps (FDD)~50kbps for HD-FDD (not decided yet in 3GPP)
UL Transmit Power23dBm 20dBm23dBm, lower power under discussion
VoLTE supportWill be supportedNot supported
Mobility supportFull mobility supportNo connected mobility (only idle mode reselection)
TTM6-9 month advantage (estimated)Standard is not finalised yet

Some aspects postponed to R14

As we can see, Cat M-1 has the advantage in peak data rate as well as time-to-market, while NB-IoT has greater flexibility in spectrum that can be utilised and modes of operation.

Of course, the key parameters that most interest providers are performance, cost and power. The current market perception is that NB-IoT offers better coverage, lower power consumption and is significantly lower cost. However, a closer, more critical look at the data suggests that this is not the technical reality. Let’s delve into these 3 important KPIs from a technical standpoint, says Itay Lusky, senior director of Strategic Product Marketing at Altair Semiconductor.

Performance of Cat-M1, Cat-M, NB-IoT, Cat-M2

Maximum coupling loss (MCL) is defined as the maximal total channel loss between User Equipment (UE) and eNodeB (eNB) antenna ports at which the data service can still be delivered. Practically, it includes antenna gains, path loss, shadowing and any other impairments. The higher the MCL, the more robust the link is.

According to 3GPP, the MCL for CAT-M1 is 155.7 dB while NB-IoT is 164 dB – an extraordinary difference of more than 8 dB. On the surface, this would indicate a significant advantage for NB-IoT’s performance. Yet, this comes as a surprise because according to the Shannon Theory, low SNR approximation capacity is independent of bandwidth if the noise is white.

As a result, we would have expected:

  • Similar coverage in uplink assuming the same total transmit power
  • x6 (~8dB) better coverage for CAT-M1 in downlink as incoming eNB signal energy is x6 larger due to the larger bandwidth used

Indeed, a closer look at the reference scenario definition reveals that the MCL in the two standards were defined using different transmit power, Noise Figure and target throughput assumptions, making it an uneven comparison. This can be seen in below table.

CAT-M1NB-IoT
References3GPP 36.888, RP-1504923GPP 45.820 7A
DownlinkUplinkDownlinkUplink
Tx Power46dBm/9MHz23dBm43dBm/180kHz23dBm
Noise Figure 9dB5dB5dB3dB

If instead we use the same assumptions (equal Tx power, Noise Figure and target throughput), we will see that the above expectations hold: in UL both standards have the same coverage, and in DL CAT-M1 has ~8dB better coverage than NB-IoT.

In practice, when we consider frequency hopping and turbo/coding features present in the CAT-M1 standard then CAT-M1’s advantage is even further revealed.

LTE-M vs NB-IoT Report

Cost

NB-IoT is perceived to have a substantially lower cost structure compared to CAT-M1, which is crutial in products like, smart trackers, sensors and smart meters.

The below diagram of a typical modem will help us evaluate this claim.

The block diagram shows common building blocks of a typical module design. This includes RF blocks (such as filters, switches, PA, transmit and receive chains etc.), transmit and received analog blocks, baseband (“BB”), processor handling protocol implementation, memory, other servicing blocks (crystals, Power Management Unit- PMU, eUICC support, Real Time Clock- RTC) and optional blocks (such as GPS and MCU).

ghxsryae

Most of the blocks, marked in white, do not change as a functions of 3GPP standard used.

This holds true assuming there is an apples-to-apples comparison between technologies (i.e. same number of bands, same operator added services, same added capabilities such as integrated GPS, MCU etc.).

The main block that is changed between technologies is the baseband Physical Layer (PHY) in charge of the Digital Signal Processing (DSP) of the modem.

Altair logoThe baseband PHY block size may be substantially reduced by moving from 1.4Mhz processing to 200KHz processing. However, given current technology the difference stands at ~10 cents cost delta, which is ~2% of target module prices for 3GPP R13 technologies. That gap will become even smaller in about 2-3 years when technology matures taking into account technology shrinkage following Moore’s law.

In short, NB-IoT does have a cost advantage over CAT-M1, however it is much smaller than the current industry perception.

Register to Webinar
Global CAT-M1 and NB1 Adoption: A Bird’s Eye View

Power

Power consumption in IoT devices is comprised of both standby and active power consumption.

Standby power consumption is a function of design and technology used, and essentially should not differ between CAT-M1 and NB-IoT. Active power consumption does differ among the two technologies. It is essentially the multiplication of transmitted power density and the length of transmission.

Starting with DL active power consumption, CAT-M1 has substantially higher throughput support (both x6 in bandwidth and higher modulation support) than NB-IoT. As a result, UE time for specific data to be received is substantially smaller, resulting in an estimated 50% lower active power consumption than NB-IoT.

For UL, in good channel conditions CAT-M1 has lower active power consumption due to its higher modulation support. In limited channel conditions NB-IoT is superior to CAT-M1 due to its support of single tone transmission. That benefit is likely to be closed in 3GPP R14.

To summarise, CAT-M1 has lower active power consumption in DL and UL in good channel conditions. For UL limited channel conditions NB-IoT today has better active power numbers.

Conclusion

Both CAT-M1 and NB-IoT are being pursued aggressively to become the de-facto connectivity solution for IoT products. While both standards fare well in different scenarios, it is critical not to take market perceptions at face value but rather compare both solutions evenly, all things being equal, in order to make the right technology decisions.

We analysed three key KPIs including coverage, cost and power consumption. While the market perception is that NB-IoT has a clear advantage over CAT-M1 for these KPIs, we conclude that CAT-M1 actually offers advantages for coverage and power, and only a minimal cost disadvantage when compared to NB-IoT.

Future platforms that support both CAT-M1 and NB-IoT may ultimately allow providers to hedge their bets, but until then it is crucial to understand the technical data and consider the real added-value before choosing.

The author of this blog is Itay Lusky, senior director of Strategic Product Marketing at Altair Semiconductor

About the Author:

Itay Lusky is the senior director of Strategic Product Marketing at Altair Semiconductor, a leading provider of single-mode LTE chipsets. Altair’s portfolio covers the complete spectrum of cellular 4G market needs, from supercharged video-centric applications all the way to ultra-low power, low cost IoT and M2M. Altair has shipped millions of LTE chipsets to date, commercially deployed on the world’s most advanced LTE networks.

Comment on this article below or via Twitter: @IoTNow_ OR @jcIoTnow

RECENT ARTICLES

OpenText Europe: AI for growth and sustainability

Posted on: March 19, 2024

OpenText, the information company, is set to host OpenText World Europe 2024 April 15 – 18, 2024, with a series of in-person customer conferences taking place in London, Munich and Paris. The event series will bring together industry leaders, innovators and customers to discuss how technology can enable global organisations to build for growth, experience and sustainability.

Read more

Surrey leads new £8 million FORT centre for advancing secure networks

Posted on: March 18, 2024

The Engineering and Physical Sciences Research Council (EPSRC) announced that Surrey’s 5G/6G Innovation Centre will lead a new £8 million Centre for Doctoral Training in Future Open Secure Networks (FORT). 

Read more
FEATURED IoT STORIES

What is IoT? A Beginner’s Guide

Posted on: April 5, 2023

What is IoT? IoT, or the Internet of Things, refers to the connection of everyday objects, or “things,” to the internet, allowing them to collect, transmit, and share data. This interconnected network of devices transforms previously “dumb” objects, such as toasters or security cameras, into smart devices that can interact with each other and their

Read more

The IoT Adoption Boom – Everything You Need to Know

Posted on: September 28, 2022

In an age when we seem to go through technology boom after technology boom, it’s hard to imagine one sticking out. However, IoT adoption, or the Internet of Things adoption, is leading the charge to dominate the next decade’s discussion around business IT. Below, we’ll discuss the current boom, what’s driving it, where it’s going,

Read more

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT. NB-IoT vs Cat-M2 Subsequently, the market became fragmented and it is fair to say that confusion abounds. Indeed, the efforts being made to further each standard as well as

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, home automation using iot is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more

5 challenges still facing the Internet of Things

Posted on: June 3, 2020

The Internet of Things (IoT) has quickly become a huge part of how people live, communicate and do business. All around the world, web-enabled devices are turning our world into a more switched-on place to live.

Read more