Fog matters

Lynne Canavan, executive director, OpenFog Consortium

The decade of fog computing has begun. Ushered in by a specific set of high-velocity digital business problems and growth opportunities, fog computing is rapidly gaining traction.

For those involved in the Internet of Things (IoT), 5G, artificial intelligence and virtual reality, fog computing is more than an interesting approach: It’s a necessary one.

Why? In today’s digital world, you can’t run everything in the cloud. There are latency, mobility, geographic, network bandwidth, reliability, security and privacy challenges. Nor can you run everything at the edge with intelligent endpoints, due to energy, space, capacity, environmental, reliability, modularity, and security challenges, says Lynne Canavan, executive director, OpenFog Consortium.

Fog computing addresses these gaps by bridging the continuum from cloud to things. It distributes compute, communication, control, storage and decision making closer to where the data is originated, enabling dramatically faster processing time and lowering network costs. Fog is an extension of the traditional cloud-based computing model where implementations of the architecture can reside in multiple layers of a network’s topology. By adding layers of fog nodes, applications can be partitioned to run at the optimal network level.

In particular, fog computing supports time-critical applications that require sub-millisecond reaction time. Autonomous vehicles, emergency responsiveness, drones and virtual reality are among the dozens of applications that require rapid latency. For example, a drone can travel at 100 miles per hour, or roughly 147 feet per second.

During its journey, it requires continuous software updates, produces massive amounts of data that require computation and communication. If you consider that the best cloud round trip latency is around 80 milliseconds, the drone would fly about 12 feet between cloud messages. Fog nodes can reduce the latency to such a degree that a drone will only travel two inches before the next update is delivered.

Fog computing also supports data-intensive, remote operations. In oil and gas exploration, real-time subsurface imaging and monitoring reduces the drilling of exploratory wells, saving money and minimising environmental damage. Thousands of seismic sensors generate the high-resolution imaging required to discover risks and opportunities.

Fog computing manages the energy, bandwidth and computing needed for timely risk and opportunity analysis in this geographically-challenged, disruption-prone and data-intensive process. Instead of collecting data in the cloud for post-processing, fog nodes form mesh networks to stream data processing tasks and communicate with each other to compute the subsurface image in the network.

The fog computing algorithm is resilient to network disruption and adapts to energy and bandwidth changes. To work, fog computing must enable rapid, trusted and secure transmissions.

This requires an open, interoperable architecture that will ultimately enable end users to choose interoperable solutions from a diverse, vibrant supplier ecosystem. Creating the open architecture, and testing it via fog computing use cases and testbeds, is the work of the OpenFog Consortium.pillar chart - blog

The OpenFog Consortium was founded in November 2015 by ARM, Cisco, Dell, Intel, Microsoft and Princeton University, based on the shared vision that an open fog computing architecture is necessary in today’s increasingly connected world.

Our mission is to drive industry and academic leadership in fog computing architecture, testbed development, and a variety of interoperability and composability deliverables that seamlessly leverage cloud and edge architectures to enable end-to-end scenarios. Through an open membership ecosystem of industry, end users, universities and research organisations, OpenFog is collectively applying a broad coalition of knowledge to the technical and market challenges ahead.

Today, 51 member organisations from 14 countries are collectively working on the OpenFog reference architecture, to be released in early 2017. This framework is based on eight foundational pillars: Security, scalability, openness, autonomy, RAS (reliability, availability and serviceability), agility, hierarchy, and programmability.

From the silicon layer through to the operating system, OpenFog members are defining and testing functional and component level interoperability for fog-to-fog communication, by applying the architecture to specific use cases. Standards development organisations will then use this architecture to create the specific standards.

Driving business growth through fog-enabled applications is the ultimate goal of our work. The OpenFog architecture is the underlying framework to build and test new concepts and products in real-world use cases and testbeds. Smarter cities, drone-enabled supply chains, remote energy extraction and exploration, smart traffic, video surveillance, virtual reality, environmental conservation and emergency response are just a sample of the emerging use cases that are enabled and improved through fog computing.

The future is looking very foggy indeed.

This author of this blog is Lynne Canavan, executive director, OpenFog Consortium

Comment on this article below or via Twitter: @IoTNow_ OR @jcIoTnow

FEATURED IoT STORIES

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, iot home automation is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more
RECENT ARTICLES

Infineon and Rainforest Connection create real-time monitoring system to detect wildfires

Posted on: October 22, 2021

Munich and San Jose, California, 21 October, 2021 – Infineon Technologies AG a provider of semiconductors for mobility, energy efficiency and the IoT, announced a collaboration with Rainforest Connection (RFCx), a non-profit organisation that uses acoustic technology, Big Data and Artificial Intelligence / Machine Learning to save the rainforests and monitor biodiversity.

Read more

Infineon simplifies secure IoT device-to-cloud authentication with CIRRENT Cloud ID service

Posted on: October 21, 2021

Munich, Germany. 21 October 2021 – Infineon Technologies AG launched CIRRENT Cloud ID, a service that automates cloud certificate provisioning and IoT device-to-cloud authentication. The easy-to-use service extends the chain of trust and makes tasks easier and more secure from chip-to-cloud, while lowering companies’ total cost of ownership. Cloud ID is ideal for cloud-connected product companies

Read more