Don’t risk deadly delays with your data

There is no doubt that industrial applications of the Internet of Things (IoT) have emerged as some of the most compelling use cases for the technology. The latest estimates place the number of connected devices anywhere between 20 billion and 50 billion by 2020, with General Electric predicting that investment in industrial deployments will top US$60 trillion (€48.89 trillion) by 2030.

However, many of the systems and platforms that are currently emerging use cloud-based analytics, says John Crupi, vice president, Engineering Systems, at Greenwave Systems. While this can be effective when scouring the oceans of data that is collected by any give device, it significantly increases the time needed for action to be taken.

In time-sensitive industrial IoT deployments where immediate detection and actions impact security, safety and machine failures, this delay can be disastrous. With cloud-based solutions, data will not be provided quickly enough to enable the IoT to be fully effective for mission-critical applications. This issue is not only a huge concern now, but one that is going to be exacerbated as IoT deployments grow in scale.

The true edge

To support the massive number of IoT devices expected and radically reduce decision and action time, analytics should be pushed as close to the device edge as possible. Too much IoT data is dying in data lakes and by providing real-time actionable insights as events occur edge analytics can solve this problem.

Traditional Big Data methods are great for batch-oriented analytics, but aren’t suitable for the interactive, real-time analytics required for IoT. With the huge amounts of data produced by large machines and engines, or wide networks of millions of smaller devices, it is impossible to massively mine and still get real-time decisions. The data that flows through these networks is vast, fast and needs an active analytics framework to identify issues and take actions as the data flows.

If you need real-time decisions, actions and insights, then you need an architecture which supports the streaming of edge analytics, cloud analytics and real-time and historical blending. This principle applies to smart factories, smart cities, smart homes and any environment where “smart” means intelligence at the edge.

The IoT industry is beginning to understand that one of the best ways to provide these insights from the vast numbers of IoT devices is to do as much analytics as possible at the true edge of networks on the devices themselves. This architecture makes devices truly smart, allowing them to analyse, detect and act on the data as it flows to the device.

Traditional methods of passing raw data to the cloud, analysing it and sending actions back to the device introduces time delays which can be detrimental to operations. However, by implementing analytics and pattern detection at the edge, an almost-instantaneous response can be achieved in situations which require immediate action, such as alerting users that their device or network is under attack, or shutting down an engine which is exhibiting dangerous behaviour.

The internet of data

In a nutshell, the longer data has to travel for analysis, the longer an anomaly which could have a detrimental impact goes unnoticed. With edge analytics, machines and smart sensors can collect information using contextual time windows, using the cloud to aggregate non-critical data and combining it with data from devices in real-time to detect anomalies and performance issues.

Edge analytics platforms that deploy this model, such as Greenwave Systems’ AXON Predict, give developers an easy onramp to connect devices, allowing them to dynamically deploy analytic scripts to the edge and co-ordinate distributed analytics between cloud and edge.

John Crupi

As well as allowing organisations to realise the full potential of real-time analytics for the IoT with anomaly detection and instantaneous, actionable insights, it enables them to capitalise on a valuable market opportunity by providing a customised analytics solution that adds computational power and real-time intelligence throughout Industrial IoT segments. Moving forward, this will provide a smooth path to add machine learning and Artificial Intelligence at the edge.

We now live in a world where everything is becoming connected. The whole dynamic of the marketplace is changing and operators, manufacturers, utility companies and healthcare providers are all looking at incorporating the IoT in a way that delivers their services in the most efficient and profitable way.

The enterprise market needs to find solutions that fit neatly with what they are looking to do with the IoT. The only way this can be done is if the masses of data that are being created by the IoT are monitored, processed and actioned upon in real-time. If this doesn’t happen, there is a risk that the IoT will end up being viewed as only suitable for trivial, small-scale applications instead of reaching its full potential.

The author of this blog is John Crupi, vice president, Engineering Systems, at Greenwave Systems

Comment on this article below or via Twitter: @IoTNow_OR @jcIoTnow

FEATURED IoT STORIES

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, iot home automation is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more
RECENT ARTICLES

Global industry accelerating IoT adoption in response to Covid-19, new Inmarsat research reveals

Posted on: September 22, 2021

New research by Inmarsat, the provider of global mobile satellite communications, reveals a rapid increase in the maturity level of organisations adopting the industrial Internet of Things (IoT) since the start of the Covid-19 pandemic. Respondents drawn from multiple industries also reported that Covid-19 has demonstrated the importance of IoT to their businesses, with many accelerating

Read more

Nutanix cloud platform breaks down silos in hybrid multicloud operations

Posted on: September 22, 2021

Nutanix, a provider of hybrid multicloud computing, announced new features in the Nutanix Cloud Platform, including the launch of AOS version 6 software, to help enterprises build modern, software-defined data centres and speed their hybrid multicloud deployments.

Read more