5 ways merging Big Data, AI and blockchain is finally rectifying an egregious marketing gap

One of the biggest challenges marketers face today is customer acquisition and retention, says Adam Mittelberg is chief marketing officer of DataBlockChain.io.

The key to both acquiring new customers and retaining current customers is possessing the critical data that can help you, one, communicate effectively with the highest qualified contact possible and, two, further identify the needs of your current customers to foster long-term loyalty.

Unfortunately, today’s data industry is both far too complicated and highly fragmented, offering a confusing glut of choices that are overwhelming marketers who are in desperate need of this mission-critical information. The existing data marketing ecosystem of data and direct marketing list owners, managers and brokers is wildly inefficient and often ineffective, costing businesses untold millions in unnecessary time and money, and untold more in opportunity loss.

Data is the backbone of digital and traditional marketing

Even so, given the fundamental truth that data is the backbone of both digital advertising and marketing and traditional direct marketing, marketers have just struggled along with what the market has been able to provide, for better or for worse. Global advertising revenue for 2017 was US$591 billion (€493.50 billion) with $209 billion (€174.52 billion) of it dedicated to digital advertising.

A conundrum as effective data sources are becoming even rarer as the need for — and actual dependency upon — data becomes more essential. The escalating demand for big data sources that provide quality and complete data has skyrocketed in today’s digital age.

Unfortunately, it’s the fundamental big data sources that have been the very crux of the problem for marketers. Today, an individual, entity or brand looking to acquire a specific data set will have to spend extensive time and resources locating sources that meet its target audience, negotiate costs, and establish privacy standards for the transferring of the data.

This leads to a decrease in quality and data record duplication. These three challenges not only make it extremely cost-prohibitive to identify and acquire the various parameters required to compile the exact dataset that is needed but, for small and medium sized businesses, it creates an actual barrier to enter the data marketplace.

As problematic, attempting to generate revenue today from existing datasets brings its own unique set of challenges. The first is the time and money it takes to create data cards and collateral for the data owner to monetise. At the same time, they need to identify the right organisation or marketplace with the widest reach — one that represents the highest demand for their data.

The second major challenge is integrity and accountability. Data owners do not trust outside organisations to properly store, manage and monetise their data. The last major concern surrounds the security of the storage environment. Data abuse and lack of transparency in the revenue share business model are underlying fears that will ultimately prevent a list owner from making his/her unique data set available for purchase.

So with all of the problems running rampant in the big data industry, what is needed to put this key facet on course? Below are 5 reasons why merging big data, artificial intelligence (AI) and blockchain technology will revolutionise data-driven marketing worldwide, across all industries:

  1. Empowerment. A blockchain-based system empowers data source providers to monetise their data and better capitalise demand, allowing data source providers to access the large global marketplace. In the same way that eBay provides a marketplace for vendors of physical products, a blockchain-based digital marketplace can create growth potential for data source providers of all sizes, while also reducing barriers to entry into the industry.
  2. Transparency. A blockchain approach provides data providers with full transparency, traceability and auditability, overcoming many of the hurdles data providers currently face in the existing marketplace.Anyone who has operated in the big data space knows that duplicate data, false data, and questionable sourcing are unfortunate industry truths. However, a blockchain-based approach provides complete transparency, allowing buyers to see where the data has been and where it came from prior to purchasing.
  3. Confidence. A more transparent vetting and grading system for data will improve confidence building between the end user and data sources. Currently, most data purchases are practically blind transactions, whereby buyers won’t really know what kind of data they’re receiving until they actually buy it, because no vendor would ever reveal the data prior to money changing hands. Once you have the data, it’s then up to you to determine its quality but by then the money has been spent. Rather than this archaic process leaving much to be desired, having a 3rd party scoring system improves quality and increases trust in the marketplace, facilitating more transactions and leading to overall higher levels of confidence in the industry as a whole. Giving business and consumers quality and verified data that’s vetted and scored externally allows for the reduction, if not elimination, of false or outdated data — a significant problem currently plaguing the industry.
  4. Simplification. By simplifying and aggregating world data transactions into a single point of sale, the result will be an Amazon-like marketplace, where economies of scale and data aggregation will facilitate a smoother, cleaner and simply better checkout process; creating more data trade worldwide. Giving end users a simplified, easy-to-use and robust interface with a quick and secure payment system between the business or individual and data sources is a requisite means toward this end.
  5. Artificial Intelligence. “Smart Indexing” Engines are now utilising predictive analytics (a type of artificial intelligence using data analysis and machine learning) for “Confidence Scoring” to provide continual real-time accurate data.Based on immediate business conditions, this will allow for record sets that can be a single individual that matches all parameters or millions of records that match desired parameters.

Ultimately, democratising big data levels the data playing field by providing the most comprehensive marketing data solution to all businesses and individuals. It will provide a robust interface between the business or individual and the data sources. The backend systems will ensure full confidence in data quality for the end user as well as transactional finality for the data providers.

The author of this blog is Adam Mittelberg, CMO of DataBlockChain.io

About the author:

Adam Mittelberg is CMO of DataBlockChain.io, a Media Direct, Inc. partner company at the forefront of democratising big data and leveling the data playing field. He oversees the most comprehensive marketing data solution available to all businesses and individuals featuring a robust interface between users and data sources and transparent backend system ensuring data quality, confidence and transactional finality.

Comment on this article below or via Twitter: @IoTNow OR @jcIoTnow

FEATURED IoT STORIES

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, iot home automation is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more
RECENT ARTICLES

Snow Software study uncovers the realities vs. the promises of cloud

Posted on: October 26, 2021

26 October, 2021 –Snow Software, the global provider of technology intelligence, unveiled findings from its most recent survey, based on the input from more than 500 IT leaders from organisations with over 500 employees in the United States and United Kingdom to determine the current state of cloud infrastructure.

Read more

CloudM announces Archive feature which save businesses time and money while meeting compliance demands

Posted on: October 26, 2021

CloudM, a SaaS data management platform, has announced the launch of Archive, a new feature which allows users to easily, automatically, and safely store and recover user data, helping businesses to remain compliant without facing the mounting user license fees associated with traditional archiving and ediscovery solutions.

Read more