How the IoT enables more effective air quality monitoring

Many cities on the U.S.’s West Coast recently endured the worst air quality in the world due to ongoing forest fires. In addition to the suffering from damage wreaked on homes and infrastructure, exposure to toxic particles produced by the fires can cause long term health problems for residents in the affected regions, especially in urban areas where air pollution is already a topic of concern.

Because wildfires spread so rapidly, it’s crucial for public safety officials and community leaders to have continuous access to environmental data so that they can update citizens in real time about the threats facing them, says Laurent Soubielle of Sigfox. Not only does information on air quality need to be obtained quickly for it to be relevant and actionable, but it also needs to be accurate so as to not add more confusion to already chaotic circumstances.

The IoT can help communities achieve these needs. By upgrading their air quality monitors to ones equipped with IoT sensors, communities can become smarter and safer by collecting timely data on the forest fires’ impact on air quality. Here’s how:

IoT sensors collect actionable insights into evolving conditions

IoT-enabled air quality monitors, like those created by eLichens, collect data that can then determine the effects certain factors (e.g., road traffic, emissions and other pollutants) can have on air quality. Once installed, these monitors survey and automatically communicate hourly concentrations of pollutants, including nitrogen dioxide (NO2), ozone (O3,) as well as other climate measurements such as temperature and humidity level.

The data collected from these monitors can then be used by to remotely map air quality in real-time for cities. Because air quality can vary greatly even from street to street, communities need to install multiple monitors to acutely recognise variances.

Otherwise, response plans risk being generalised and ineffective in addressing a given neighborhood’s immediate situation and needs. The platform uses big data and is able to predict the evolution of air quality based on the risk factors around like factories or even weather events like wind or fires nearby. The quality of the sensors allow to achieve this a small amount of sensors wisely deployed on the area.

While the ability to detect disturbances to air quality proves valuable for city planning under normal circumstances, it’s all the more important when communities are combatting wildfires, as these monitors can detect harmful air particles from the fires. With geo-specific insights into how both natural phenomena and day-to-day activities are impacting unique environments, city leaders can develop detailed action plans for how citizens in a given area should be responding to the unique conditions facing them. Without IoT sensors to alert operators to changes in these conditions as soon as they occur, communities might miss their opportunity to respond to risks while they are still manageable.

IoT-specific networks support continuous data transmission, even in extreme circumstances

IoT-enabled devices help city officials monitor evolving air quality in real time and use that data to protect the lives of their citizens. However, communities can only realise the value of these devices if the IoT sensors are connected to a network that’s both reliable and affordable, like 0G.

Laurent Soubielle

0G networks differ from traditional ones (e.g., cellular, Wi-Fi) in that they are optimised for the frequent transmission of small amounts of data over long ranges, meaning they can continuously intake and report changes in air quality. Because the information conveyed is small in volume, these networks use less power, and therefore run at a significantly lower cost than other network options.

Especially for communities already dedicating their resources to combating crises like wildfires, cost effectiveness matters. And whereas cellular or Wi-Fi networks are vulnerable to outages during extreme conditions like intense winds, as a radio frequency network, the 0G can ensure connectivity to provide the uninterrupted access to air quality data that communities need to respond quickly and effectively.

Air quality is a pressing concern for many communities within the United States, especially those on the West Coast currently fighting ongoing wildfires. By establishing an IoT-enabled monitoring infrastructure, communities can gain critical air quality insights that help them better navigate the current wildfire crisis, as well as prepare themselves for future air quality challenges.

The author is Laurent Soubielle of Sigfox.

Comment on this article below or via Twitter: @IoTNow_OR @jcIoTnow

FEATURED IoT STORIES

9 IoT applications that will change everything

Posted on: September 1, 2021

Whether you are a future-minded CEO, tech-driven CEO or IT leader, you’ve come across the term IoT before. It’s often used alongside superlatives regarding how it will revolutionize the way you work, play, and live. But is it just another buzzword, or is it the as-promised technological holy grail? The truth is that Internet of

Read more

Which IoT Platform 2021? IoT Now Enterprise Buyers’ Guide

Posted on: August 30, 2021

There are several different parts in a complete IoT solution, all of which must work together to get the result needed, write IoT Now Enterprise Buyers’ Guide – Which IoT Platform 2021? authors Robin Duke-Woolley, the CEO and Bill Ingle, a senior analyst, at Beecham Research. Figure 1 shows these parts and, although not all

Read more

CAT-M1 vs NB-IoT – examining the real differences

Posted on: June 21, 2021

As industry players look to provide the next generation of IoT connectivity, two different standards have emerged under release 13 of 3GPP – CAT-M1 and NB-IoT.

Read more

IoT and home automation: What does the future hold?

Posted on: June 10, 2020

Once a dream, iot home automation is slowly but steadily becoming a part of daily lives around the world. In fact, it is believed that the global market for smart home automation will reach $40 billion by 2020.

Read more
RECENT ARTICLES

5G to generate 77% of global operator revenue by 2026

Posted on: December 1, 2021

Hampshire, UK. 30th November 2021 – A new study from Juniper Research has found that revenue generated from 5G services will reach $600 billion (€530.34 billion) by 2026; representing 77% of global operator-billed revenue. It found that the adoption of 5G services across consumer and IoT sectors has been driven by a strong uptake of 5G-capable devices, coupled

Read more

IoT CMP vendors add eSIM management capabilities to simplify logistics and localise connectivity

Posted on: December 1, 2021

Gothenburg, Sweden. 30 November 2021 – Berg Insight, the IoT market research provider, released new findings about the market for IoT connectivity management platforms (CMPs), a standard component in the value proposition from mobile operators and IoT MVNOs around the world. Recent developments in the domains of network virtualisation, SIM technology and LPWA networking are

Read more